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Abstract 

In a previous paper [Moss & Feil (1981). Acta Cryst. 
A37, 414-421] a method was reported to calculate the 
electrostatic potential and the electrostatic interaction 
energy from single-crystal X-ray diffraction data. The 
method was applied to experimental pyrazine data; 
however, owing to the relatively low quality of the data, 
the results were inconclusive. In the present paper 
the results are presented of a model study in which the 
method has been applied to the analysis of ideal 
error-free diffraction data calculated from a theoretical 
wavefunction. The molecular quadrupole moments and 
the electrostatic interaction energies of two pyrazine 
molecules thus obtained are in very good agreement 
with the corresponding results derived directly from the 
wavefunction. Thus the proposed method may be used 
to determine the long-range electrostatic component of 
molecular interactions from highly accurate X-ray 
diffraction data. 

Introduction 

When atoms form a molecule charge is moved from 
one part of the molecule to another. This displacement 
of charge, or electron density, is an essential part of the 
formation of chemical bonds. Whereas the origin of this 
effect is well understood and its qualitative features can 
be predicted, its magnitude is difficult to calculate for 
molecules consisting of more than a few atoms. 

Several properties of the molecule depend on its 
charge distribution. In particular, the deviation from 
spherical symmetry of the constituent atoms and the 
transfer of charge from one atom to another give rise to 
a potential in the region surrounding the molecule. 
Scrocco & Tomasi (1978) have discussed the role of 
this potential in the chemical reactivity of the molecule. 

In a previous paper (Moss & Feii, 1981), hereafter 
referred to as paper 1, the authors reported a method to 
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calculate the electrostatic potential and the electro- 
static interaction energy from single-crystal X-ray 
diffraction data. The method consists of three steps: In 
the first step, following Hirshfeld (1971), the electron 
density in the crystal, p(r), is written as a linear 
combination of the density corresponding to free 
atoms, p0U)(r), and atomic deformation densities, 
Ap~i)(r): 

a t o m s  

p ( r )=  ~ [p0~t)(r)+ Ap")(r)]. 
i 

The deformation densities are determined from X-ray 
diffraction data, along with the conventional positional 
and thermal parameters, in a least-squares refinement. 
In the second step the deformation densities are 
replaced by point multipole moments centered on the 
atoms. In the final step the electrostatic potential due to 
the molecule is calculated using the point multipole 
moments of the constituent atoms. Similarly the 
electrostatic interaction energy between two molecules 
is calculated as a series of point-multipole-point- 
multipole interactions. Implicit in the comparison of the 
results of this last step with theoretical calculations is 
the assumption that the electron density distribution in 
a crystal is the superposition of the electron density 
distributions of isolated molecules. Recent work by 
Moss & Coppens (1980)indicates that this assumption 
may not be entirely valid. 

In paper 1 the method outlined above was applied to 
experimental X-ray diffraction data on pyrazine. The 
electrostatic interaction energies of two pyrazine 
molecules determined from the refined deformation 
models were in qualitative agreement with an approxi- 
mate theoretical calculation based on an ab initio wave- 
function. The poor quality of the pyrazine crystal 
precluded a precise determination of the deformation 
density with the result that several deformation models 
gave equally good agreement with the experiment as 
judged by the conventional crystallographic agreement 
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factors. The corresponding electrostatic interaction 
energies of two pyrazine molecules, however, showed a 
considerable spread. Moreover, the theoretical results 
were outside the range of values calculated on the basis 
of the various deformation models. Thus no conclusive 
answer could be given to the question of the suitability 
of the proposed method to obtain electrostatic proper- 
ties from X-ray diffraction data. 

In the present paper we apply the method to ideal 
error-free diffraction data calculated from a theoretical 
wavefunction. We compare: 

(i) the deformation model difference densities cal- 
culated at finite resolution with the difference density 
calculated using the theoretical structure factors; 

(ii) the molecular quadrupole moments calculated 
from the refined deformation parameters with those 
calculated directly from the wavefunction; and 

(iii) the electrostatic interaction energies of two 
pyrazine molecules calculated from a point-multipole- 
point-multipole series, where the point multipoles are 
derived from the refined deformation parameters, with 
the corresponding results derived directly from the 
wavefunction using an approximate theoretical 
technique. 

The results of these comparisons show that the 
proposed method can be used to calculate the long- 
range electrostatic component of molecular inter- 
actions from highly accurate X-ray diffraction data. 

Two sets of structure factors were calculated using 
the experimental unit cell as given in Table 1. The 
structure factors belonging to the first set correspond to 
a static density and were assigned unit weights. Thus 
the information content of these structure factors is 
correctly represented in the least-squares refinement. 

The second data set was obtained by applying an 
isotropic, overall temperature factor corresponding to a 
mean square displacement of (u 2) = 0.01 A 2. To this 
second set of structure factors variances were assigned 
corresponding with those derived from the experi- 
mental pyrazine data of de With, Harkema & Feil 
(1976): 

crE(Fo2bs) 1 
aZ(Ft2h)_ _ _  FtZh + -  

Fo bs F,,, 
where Fob s and Fth are the observed and theoretical 
structure factors respectively and e z is the variance 
assigned to the structure factors. The last term was 
added to prevent very small theoretical structure 
factors from having a very large weight in the 
least-squares refinement. Its physical significance is 
doubtful, but it is not expected to introduce systematic 
errors and it served the purpose well. Thus this second 
set of structure factors more closely parallels the 
experimental situation in which the high-order data are 
generally less reliable. Figs. l(a) and (b) show the 
difference electron density for the two sets of structure 
factors. 

Calculations and results 

(a) Structure  fac tors  

Structure factors were calculated from the mol- 
ecular wavefunction of Alml6f, Roos, Wahlgren & 
Johansen (1973). This wavefunction is the result of a 
single determinant SCF calculation using the experi- 
mental geometry determined from the spectroscopic 
measurements of Meritt & Innes (1960) and the 
following basis set: C,N [7s,3p]; contracted to [4s,2p]; 
H [4s] contracted to [2s], supplemented by two p e  
polarization functions. When a wavefunction is cal- 
culated, nuclear positions are used as parameters. 
Owing to experimental errors and the approximations 
in the calculations, experimental positions of the nuclei 
will not, in general, coincide with minimum-potential- 
energy positions of the nuclei. In this case, the 
Hellmann-Feynman theorem predicts a distribution of 
electron density that leads to an electrostatic force on 
the nuclei. This feature in the electron density appears 
as sharp dipole distributions centered at the nuclei. 
Such a sharp dipole distribution will, however, hardly 
be observable in the low-order data of the present 
calculation. The use of an experimental geometry in the 
theoretical calculation will therefore be of little import 
in the present study. 

(b) Choice o f  deformation models 

Both sets of structure factors were analyzed using 
the deformation model of Hirshfeld (1971). The 
deformation functions centered on atom i are of the 
general form 

3pn(l)k(ri) = ¢-'(i) N n r'] e -'~'r' cos n O n k, , ~ "  n , k  

where the vector r t is measured from the atomic site, 
0n, k is the angle between the vector r I and a specified 
polar axis (n,k), n is the order of the function ranging 
from 0 to 4, k = 1, 2 . . . . .  (n + 1)(n + 2)/2 and labels 
the polar axes of a given order, a is a parameter that 
governs the radial breadth of the deformation functions 
on each type of atom, and N,, is a normalizing factor. 
The parameters {C(i,),at } a r e  determined in a least- 
squares refinement. 

The deformation functions of second and higher 
order are hybrid functions. For example, the six 
functions with n = 2 are linear combinations of an 

Table 1. Unit-cell information (de With, H a r k e m a  & 
Feil, 1976) 

a = 9.325/~ Space group No. 58, Pmnn 
b = 5.850 Z = 2 
c = 3.733 (sin 0/2)max = 1.0/k -1 
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implied monopole function, and five independent 
functions with the same radial dependence and an 
angular dependence Ytm(O,~o), where l = 2 and m = 0, 
+1, +2. Similarly, the third-order functions contain 
implied dipolar terms while the fourth-order functions 
contain implied monopole and quadrupolar terms. 

Figs. l(a)  and (b) show negative regions about the 
carbon and nitrogen nuclei. It requires monopolar, or 
zeroth-order, deformation functions to describe these 
distributions. As stated above, the second- and fourth- 
order deformation functions contain implicit monopolar 
contributions; hence three terms with radial depen- 
dence e -c`r, r 2 e - a r  and r 4 e -c'r are present to describe 
spherical distortions of the charge distributions. The 
differences among these various monopolar terms are 
most pronounced very close to the origin. The lack of 
resolution of experimental data makes the deter- 
mination of the coefficient of the zeroth-order or 
explicit monopole function extremely difficult. Con- 
sequently, the explicit monopole is often omitted from 
the deformation model. The effect of this term was 
tested using deformation models with and without an 
explicit monopole function on C and N. In all cases an 
explicit monopole function was included in the hydro- 
gen deformation model. 

" ',1 \ 

(a) 

, I kk\\ 

(b) 
Fig. 1. Difference density in pyrazine calculated at limited 

resolution with f t h e o r y  - -  Fsphe~lcalato m as input where Fth~ory are: 
(a) the static structure factors of data set 1, and (b) the thermally 
smeared structure factors of data set 2. The contours are at 
intervals of 0.05 e A -3. The contours are solid and dashed for 
positive and negative densities respectively. 

Hirshfeld (1977) has pointed out that the potentially 
large number of deformation coefficients may be 
reduced by a consideration of local atomic symmetries. 
In some cases the crystallographic symmetry fixes 
some of the deformation coefficients. In other cases 
difference maps show the presence of approximate, 
non-crystallographic, local symmetries, which allow 
some parameters to be constrained. Since the wave- 
function from which the test structure factors were 
derived was calculated for a planar molecule the 
electron density distribution was assumed to contain a 
mirror plane. The local symmetry of the C atom 
suggests that an additional mirror plane through the 
C - H  bond, perpendicular to the plane of the molecule, 
be imposed on the C-atom deformation functions. The 
effect of imposing this mirror plane on the results was 
determined by using models with and without the 
mirror plane. The low electron density of the hydrogen 
atom and the absence of fine details in the electron 
distribution usually limits deformation models to at 
most second-order functions of the hydrogen atom. 
Fig. 2 shows the difference electron density distri- 
bution in a plane through the H atom perpendicular to 
the C - H  bond. It shows approximately rotational 
symmetry which, to second order, is equivalent to a 
fourfold rotation axis along the C - H  bond. 

A summary of the different deformation models used 
is given in Table 2. The notation is in two parts. The 
first part denotes the presence (M) or absence ( - )  of 
explicit monopolar or zeroth-order deformation func- 
tions on carbon and nitrogen. The second part denotes 
the local symmetry imposed on the C atom as either m, 
corresponding to the molecular mirror symmetry, or 
m m ,  for which an additional mirror plane through the 
C - H  bond and perpendicular to the molecular plane 
has been imposed. 

(c) R e f i n e m e n t s  

Least-squares refinements based on F 2 were per- 
formed using the two data sets and the four defor- 

//( ~ i i  \ \ \ 

Fig. 2. Difference density through the hydrogen atom perpen- 
dicular to the carbon-hydrogen bond as calculated from data set 
1. The molecular plane passes vertically through the hydrogen 
atom. Contours as in Fig. 1. 
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mation models described above. In all refinements the 
scale factor and the input positional and overall thermal 
parameters were held fixed. This limits the test to which 
the method is put, since it is known that these 
parameters correlate with the deformation parameters. 
Strong cases are made for using neutron parameters for 
positions and thermal motion, in particular for the 
hydrogen atoms. The discussion on the transferability 
of neutron parameters, however, is still in full swing and 
some doubt exists if these parameters will be accurate 
enough. The C and N spherical-atom scattering factors 
weri~ taken  f rom I n t e r n a t i o n a l  T a b l e s  f o r  X - r a y  

Crystallography (1974). For hydrogen the contracted 
spherical-atom scattering factors of Stewart, Davidson 
& Simpson (1965) were used. Use of a contracted 

Table  2. D e f o r m a t i o n  m o d e l s  

M,m M, mm --,m --,ram 

(a) Order of functions 
onCandN 0,1 ,2 ,3 ,4  0,1,2,3,4 1,2,3,4 1,2,3,4 
onH 0,1,2 0,1,2 0,1,2 0,1,2 

(b) Local symmetry 
on N mm mm mm mm 
on C m mm m mm 
on H 4mm 4mm 4mm 4mm 

hydrogen atom in the least-squares refinement corre- 
sponds to a fixed-monopole hydrogen deformation 
function in addition to the parameters of the Hirshfeld 
deformation model. In calculating all difference and 
model maps an isolated spherical hydrogen atom was 
subtracted. To improve the convergence of the refine- 
ments, damping factors of 0.5 were applied to all 
parameters. The correspondence between the 
theoretical structure factors, Fth, and those based on 
the m o d e l ,  Fmod, is e x p r e s s e d  by  the f o l l o w i n g  (dis)- 
a g r e e m e n t  factors 

R = 

Z [ F t h ( H ) -  Fmod(H)l 
H 

Y FMH) 
H 

and 

1/2 

Z(w(H)n.(H))' J 
The results of the different refinements are given in 
Table 3. 

. . - . .  ,.- -~ 

/ " k " "  

;' \ [" ,- - . " 

\ 
,'5', --, \ 

M,m 

Table  3. A g r e e m e n t  f a c t o r s  f r o m  m u l t i p o l e  r e f i n e m e n t s  

Data set 1 (unit weights, no thermal smearing) 

M,m M, mm --,m --,mm 

R (%) 0.45 0.45 0.57 0.78 
R w (%) 0.34 0.52 0.63 0.78 

Data set 2 (experimental weights, thermal smearing) 

M,m M, mm - , m  - , m m  

R (%) 0.46 0.53 0.69 0.78 
Rw(%) 0.45 0.61 0.97 1.18 

_ - - - _ .  

', / ~ ' .  / 
i J N'-" ---'/ \ 

~ -  4,1 
" ' i "  . . . .  - - - - - 

. . . . .  . . .  

)/ \ '" 

. . . . .  • , 

~ . ~ ~  
i 

,( -". 

 J;,fmk 

:~. ,; , - . ~ / / / / / / I  

M ,  r n m  - .  m - .  m m  

Fig. 3. Model deformation densities APmoa(r ) at infinite resolution for the four deformation models of Table 2 from the analysis of 
data set 1. Contours as in Fig. 1. 
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(d) Electron density distribution 

From the results of the refinements three kinds of 
electron density maps were calculated with the follow- 
ing input: 

(1) model density distribution at infinite resolution 

(i) r APmod(r) = Z 6Pn,k( ); 
i , n , k  

(2) model density at limited resolution 

Ap/moI(r):~H (Fmod-- j~. fj'at°mlc) e2~iH'r; 
(3) residual density 

1 
Apt(r) = 7 Z (Fth -- Fro°d) e2"itt" 

H 

The maps based on the different models refined using 
data set 1 are shown in Figs. 3, 4 and 5. In order to 
compare the results based on data set 2 with these 
maps, the static model density and the corresponding 
structure factors were calculated. The resulting maps 
showed no systematic differences from those obtained 
with data set 1 and are therefore not given here. As 
discussed above, the sharp features at the nitrogen 
nucleus may be due, in part, to the use of an 

experimental geometry in the calculation of the 
wavefunction. 

(e) Molecular quadrupole moments 

The distribution of charge in a system can be 
represented by its moments. The outer moments of an 
assembly of point charges, q~, are defined by 

(i) • t . t~. . . ,  = ~. qir,~ r(~ ) -(i) • . .  l ' r l  , 
i 

where r,~ = x,y,z for a = 1, 2, 3. 
An alternative formulation, used by Buckingham 

(1959), defines the outer moments of a charge 
distribution in terms of the Legendre polynomials. The 
Buckingham moments are easily derived from the outer 
moments. For example, the components of the quadru- 
pole moment are simply related to the second 
moments through the expressions 

Oxx= ½ ~ q t ( 3 x ] -  r~)= gxx-½(gyy  + la:=) 
t 

= l u=,. 

By definition the Buckingham moments are zero for an 
assembly of neutral spherical atoms, hence non-zero 
values provide a measure of the shift of electron density 
due to bond formation. 

I 
M ,  m 

. . . .  . / ~ ~ . "  ", ! I X "-. .,'" 

/ 

M ,  m m  

By symmetry the first non-vanishing moment of the 
pyrazine molecule is the molecular quadrupole mo- 
ment. The components of the quadrupole moment can 
be derived from the refined deformation model density 
d i s t r i bu t ion  APmod(r ) = ~.t,n,k (0 r 6pn.k ( ). The results 
obtained with the different deformation models are 
compared with the values calculated directly from the 
wavefunction of Alml6f, Roos, Wahlgren & Johansen 
(1973) in Table 4. We notice that most moments are 
slightly underestimated relative to the theoretical 
values. The largest discrepancies between the model 
values and those calculated directly from the wave- 
function are found in model (-,m). 

I 

.. ,, i i ,,.' 

-- ,  m 

- " -  "~ / ' - ~  .' ', 

7 I \ ' - "  

Fig. 4. Model deformation densities APtmod(r) at limited resolution (sin 0/2 < 1.0 A -1) corresponding to those of Fig. 3. 
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( f )  Potential calculations 

The electrostatic effect of the charge distribution in a 
molecule on neighboring charges is most directly 
represented by the potential in the space surrounding 
the molecule. To avoid complications due to pene- 
tration of the promolecule density, that is the density 
formed by the superposition of neutral spherical atoms, 
only the region outside the van der Waals radii was 
considered. 

The electrostatic potential can be calculated by either 
(i) direct solution of Poisson's equation through the 

expression 

--lel f APmod(r) 
V ( r ) -  4roe o . ,  r 

dr 

or  

(ii) by expanding this expression as a series involv- 
ing point multipole moments centered at the nuclear 
sites (Buckingham, 1959), where these point multi- 
poles are derived from the spatially extended atom- 
centered deformation functions. 

Calculations showed no difference between the 
results of the two methods at the distances of interest 
here. The potential, corresponding with model (M,m), 
expressed as the potential energy of a proton in the field 
of the molecule, is shown in Fig. 6. The difference from 
the results obtained with other deformation models are 

- k t I'r'l \ /' - -  
l -  -~ \ "\.._J' . / ,- 

} / \  \ \ , , ,  

/z.s?:---g', P ~ \ 
I I ! M ' , - ( ' , , ; I  [ "~ 

, . . / , . . - - - - . ,  
". C . .J<r"Z--\  " .  " " \  , " ~ X - ?  " -  ~,-, "',, ' 

" -  - -_ . ::_X,', ¢ . ' i  , . .  ,, , . . . .  "-:.:-:--\" ~ ~ " / 

shown in Fig. 7. Since the results obtained from the 
analysis of the two data sets are very similar only those 
for data set 1 are presented here. 

(g) Electrostatic energy 

As in the case of the potential, the electrostatic 
interaction energy can be expressed as a series 
involving the point multipoles (Buckingham, 1959). In 
this expression, which is valid for large molecular 

Table 4. Molecular quadrupole moments (atomic units) 

The x axis is along the N - N  vector and the molecule lies in the x y  

plane. Also note that by definition O~ = -(O~x + Oy~). 

M , m  M ,  m m  - , m  - , m m  Theoretical* 

Oxx -8 .35  - 8 . 6 8  - 7 . 3 6  -8 .43  -8 .91  
O~ 10.15 10.01 9.01 9.85 10.38 
O~ - 1 . 8 0  - 1 . 3 2  -1 .65  -1 .41  - 1 . 4 7  

* Calculated from the wavefunction of Alml6f, Roos, Wahlgren 
& Johansen (1973). 

........... --~ ........... - ~  ~/ . . . . . . . . . . .  

. \ • . . ~  -~ \ 

Y ~ : , , ~ \ \ \ , ,  / , "  
! ~ / , 

' H(2 .... " 
i , Y / / :  .... , 
i ' / . ' "  . . . . . . . . . . . . .  i 

- / ; : " ? - - i - " . . - :  • " • "i 

\ "i-f..::!-;i:-. ;..".. '.. 
' , ~'i!::..: .v.'. '. '. '. t 
" .  N ~i~'.i:[i.... . .."..'.. ! - j  

F ig.  6. D e f o r m a t i o n  e lec t ros ta t i c  po ten t i a l  ca l cu la ted  w i t h  m o d e l  
( M , m )  f r o m  the ana l ys i s  o f  da ta  set 1. The  con tou rs  are at  
intervals of 2 kcal mol -~ (8.37 kJ mol-~). The contours are solid 
and dashed for positive and negative values respectively. The 
long-dash line is the zero contour. The solid border is formed by 
the intersection of I. 7 ,~ spheres centered at each atomic site and 
corresponds approximately to the van der Waals surface of the 
molecule. 

/ } / . \  ~ \  t / \X  

-, / / /  ' \ e /  \ , 

, ' ' /  ~ - /  . . . .  ~ . .  / r 
., / /  /~,-:.:t. } \ \ 

J / N  

' "  , ' -X ×'xk ~ - _  \ ~ :" ' "  } " "" [ \  / 

/ : ;-, ' ~ / c - , \ ,  % \  / , '  ',1 m 
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~ - ' ~  .., /7~- / I ~' \  / 

) / '  " , k  

/ / ~ .., ,, \ \ 

1 1  /.C~ _ _ 1  \ ~ . 
/ 1 / - -  \ / 

L • ~" l 

I -  \ Q H  \ ~ I .. 

I \ \  \ # -  ~ --  i /  
\ ~ x. 

f "  ~ ,  . 

- ,  m m  M .  m M .  m m  

Fig. 5. Residual densities Apt(r) corresponding to the model densities of Fig. 4. Contours as in Fig. 1. 



separations, point charges interact with the electro- 
static potential; point dipoles with the electric field; 
point quadrupoles with the electric field gradient; and 
so on. The various formulae needed are given in paper 
I. 

The results based on da ta  set 1 are given in Fig. 8 

/ z / /  z /  / 

(a) 

and those based on data set 2 in Fig. 9. For comparison 
the theoretical calculation of Mulder & Huiszoon 
(1977) from the wavefunction of AlmlSf et al. (1973) is 
also included. As the curve for models (M,m), (M,mm) 
and (-,mm) essentially superpose, only those for 
models (M,m) and ( - ,m)  are shown. 

N \ 

(b) 

I HC 

I \ N 

(c) 

I 

__l.- 

/ 
'"i 

\ 
\ 

1 

Fig. 7. Differences between the electrostatic potential of model (M,m) and (a) model (- ,m),  (b) model (M, mm) and (c) model (- ,mm). 
The contours are at 1.0 kcal mol -t (4.19 kJ mol -~) intervals. 

10. 

8. 

6. 

4. 

2_ 

?b o 

-2  
× 

- 6  

- 1 0 .  

i 

- -  th. ? r y  ~, 

- - -  M , m  ~ 

. . . . . . .  , m  ~ \ ' _ _  

l 0  45o ~i 45 ° # 45 o ~ 45 ° 
o ~_90o10 o ._90000o , , _ 9 0 0 1 0  ° ~ 9 0 O l  
rotate right tool. | rotate right tool. | rotateleft tool | rotate right tool. | 
. . . . .  d ..... is / . . . . .  dr-axis / . . . . .  d ...... is l . . . . .  d . . . .  is l 

I , , , r ' ~  r - - x  r - - x  r - x  N 
1~ - N -  N N N N NI IN N N NI IN N l" "]1 
' I . . . .  I I " - '  " - ' i  I ' - - '  " N " I  

I N Ib 11 r C I I I N N - - N ' N - - N  N ~ N  - N -  
N N N N i 

I II I I I  I V  V 

Fig. 8. Electrostatic interaction energy of two pyrazine molecules 
at a fixed center-of-mass separation of 15 a.u. The relative 
orientation of the molecules is indicated at the bottom of the 
figure. The solid curve is the theoretical result of Mulder & 
Huiszoon (1977). The dashed curves are calculated from the 
results of the multipole refinements of data set 1. 
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Fig. 9. Electrostatic interaction energy of two pyrazine molecules 
at a fixed center-of-mass separation of 15 a.u. The relative 
orientation of the molecules is indicated at the bottom of the 
figure. The solid curve is the theoretical result of Mulder & 
Huiszoon (1977). The dashed curves are calculated from the 
results of the multipole refinements of data set 2. 
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Discussion and conclusions 

As is seen from the R factors, none of the deformation 
models has enough flexibility to fit the electron density 
distribution perfectly. As can be expected, the most 
flexible model, (M,m),  gives the best fit. Data set 2, in 
which the high-order data are smaller in magnitude 
and, consequently, contribute less to the R factor, 
shows only slightly inferior agreement, reflecting the 
fact that the effects of the deformation density are most 
felt in the low-order region. 

The residual maps of the models including an explicit 
zeroth-order function, (M,m)  and (M,mm),  show little 
significant structure. Understandably, the mirror plane 
along the C - H  bond imposed on the carbon defor- 
mation functions makes determination of unsymmetric 
features difficult, particularly in the C - H  region where 
the hydrogen atom also has imposed mirror symmetry. 
Both ( - ,m) and ( - , ram)  residual maps show the need 
of an explicit monopole or zeroth-order function in the 
model. 

The similarity between the model maps at limited 
and at infinite resolution shows that the significant 
features of the models are contained in the low-order 
data. It is the electron density distribution shown in the 
maps at infinite resolution and summarized in point 
multipoles on which the molecular quadrupole moment, 
potential and interaction energy calculations are based. 

The generally good agreement between the model 
quadrupole moments and those calculated directly 
from the wavefunction is an indication of the high 
quality of the models. The slight underestimate relative 
to the theoretical values is consistent with the results of 
Moss & Coppens (1982); however, there appears to be 
no rational explanation for the larger underestimation 
obtained with model ( - , m )  than with the other models. 

The potential maps of Fig. 7 show only slight 
differences. Stewart (1979) has shown that the potential 
can be calculated by Fourier summation using F(H) /H 2 
as coefficients. Thus the potential is determined to a 
large extent by the low-order data. Consequently, the 
much discussed sharply featured monopole functions 
have only minor influence on the potential. 

The interaction energy between two molecules 
depends both on the potential in the region beyond the 
molecular boundaries and on the charge distribution in 
the molecule. We notice that model ( - ,m) with its 
deficient quadrupole moment deviates from the highly 
similar results obtained by the other models. 

The differences between the results of Mulder & 
Huiszoon (1977) and the present results are small over 
most of the different orientations. The origin of these 
differences may be due both to the slight under- 
estimation of the multipole moments and to differences 
in the respective methods of calculation. The cal- 
culation of Mulder & Huiszoon (1977) was based on 
the interaction between molecular point multipoles for 

which the sum of the orders of the multipoles on the 
two interacting molecules did not exceed seven. In the 
present work the calculation is based on the interaction 
between atomic-centered multipoles, thus the series 
expansion of the electrostatic interaction energy em- 
ployed here is carried to a larger number of terms than 
that of Mulder & Huiszoon (1977). 

The results of the present study show that the 
distortion of the electron density distribution, which is 
the inevitable consequence of its representation in terms 
of a finite atom-centered expansion, is of minor 
consequence. The compact explicit monopole func- 
tions, indicated by the residual density maps, appear 
to have little effect on the long-range electrostatic 
potential or interaction energy calculations. It is these 
sharp atom-centered features which are extremely 
difficult to determine from experimental data because, 
firstly, errors in the electron density distribution due to 
errors in the experimental determination of the struc- 
ture factors accumulate in the nuclear region and, 
secondly, due to the limited resolution of the experi- 
ment, only a part of the electron density in the nuclear 
region is represented in the diffraction data. 

We therefore conclude that the present method 
opens the possibility of determining interaction param- 
eters from highly accurate X-ray diffraction data. 
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